National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Reliability of Technical Systems
Jirgl, Miroslav ; Šedivá, Soňa (referee) ; Havlíková, Marie (advisor)
This thesis deals with a reliability of technical systems. It is divided into four main parts. The first part deals with the mathematical description of reliability. Probability and statistics are used for this description. This part includes the definition and properties of random events, the description of discrete and continuous random variable and its distribution. The second part contains the definition and expression of reliability, types of faults in the digital circuits and the reliability of electronic components. This part introduces into problems of reliability. The third part includes making the reliability diagrams and reliability analysis. Each method is briefly described here. Further advantages and disadvantages of using each method are given here. The two most widely used reliability analysis - Failure Mode and Effect Analysis - FMEA (resp. FMECA) and Fault Tree Analysis – FTA are described in a greater detail. The last part focuses on an example of calculation of reliability. An analyzed object is Universal Charger NiMH and NiCd batteries. Reliability is analysed by block diagram, FTA and FMEA.
Methodology of highly reliable systems design
Straka, Martin ; Gramatová, Elena (referee) ; Racek, Stanislav (referee) ; Kotásek, Zdeněk (advisor)
In the thesis, a methodology alternative to existing methods of digital systems design with increased dependability implemented into FPGA is presented, new features which can be used in the implementation and testing of these systems are demonstrated. The research is based on the use of FPGA partial dynamic reconfiguration for the design of fault tolerant systems. In these applications, the partial dynamic reconfiguration can be used as a mechanism to correct the fault and recover the system after the fault occurrence. First, the general principles of diagnostics, testing and digital systems dependability are presented including a brief description of FPGA components and their architectures. Next, a survey of currently used methods and techniques used for the design and implementation of fault tolerant systems into FPGA is described, especially the methods used for fault detection and localization, their correction, together with the principles of evaluating fault tolerant systems design quality.  The most important part of the thesis is seen in the description of the design methodology, implementation and testing of fault tolerant systems implemented into FPGAs which uses SRAMs as the configuration memory. First, the methodology of developing and automated checker components design for digital systems and communication protocols is presented. Then, a reference architecture of a dependable system implemented into FPGA is demonstrated including several fault tolerant architectures based on the use of partial dynamic reconfiguration as the mechanism of fault correction and the recovery from it. The principles of controlling the reconfiguration process are described together with the description of the test platform which allows to test and verify the design of fault tolerant systems based on the methodology presented in the thesis. The experimental results and the contribution of the thesis are discussed in the conclusions.
Modelling and prediction of reliability
Jirgl, Miroslav ; Jalovecký,, Rudolf (referee) ; Havlíková, Marie (advisor)
This thesis presents a reliability analysis of a technical system. It is divided into three main sections. The first section introduces some of the most significant problems of reliability. It deals with a definition and an expresion of reliability, a reliability diagram selection and a detailed description of the reliability analysis. This part also includes an overview of reliability analysis types. Some of the most widely used reliability analyses are briefly described; further advantages and disadvantages of using each method are listed. Failure Modes and Effects Analysis - FMEA is then described in a greater detail. The second section contains an analysis of aviation conditions as well as a design of a reliability analysis that concerns a selected digital system; the system under analysis is a pitch trim indicator. The main design issue lies in a choice of a most suitable method. This choice stems from the overview of reliability analyses presented in the first section of the thesis. In the last section, a FMEA reliability analysis of the pitch trim indicator is conducted. This part includes a discussion of the results as well as a design action that is to lead to an increase in reliability of the analyzed system.
Methodology of highly reliable systems design
Straka, Martin ; Gramatová, Elena (referee) ; Racek, Stanislav (referee) ; Kotásek, Zdeněk (advisor)
In the thesis, a methodology alternative to existing methods of digital systems design with increased dependability implemented into FPGA is presented, new features which can be used in the implementation and testing of these systems are demonstrated. The research is based on the use of FPGA partial dynamic reconfiguration for the design of fault tolerant systems. In these applications, the partial dynamic reconfiguration can be used as a mechanism to correct the fault and recover the system after the fault occurrence. First, the general principles of diagnostics, testing and digital systems dependability are presented including a brief description of FPGA components and their architectures. Next, a survey of currently used methods and techniques used for the design and implementation of fault tolerant systems into FPGA is described, especially the methods used for fault detection and localization, their correction, together with the principles of evaluating fault tolerant systems design quality.  The most important part of the thesis is seen in the description of the design methodology, implementation and testing of fault tolerant systems implemented into FPGAs which uses SRAMs as the configuration memory. First, the methodology of developing and automated checker components design for digital systems and communication protocols is presented. Then, a reference architecture of a dependable system implemented into FPGA is demonstrated including several fault tolerant architectures based on the use of partial dynamic reconfiguration as the mechanism of fault correction and the recovery from it. The principles of controlling the reconfiguration process are described together with the description of the test platform which allows to test and verify the design of fault tolerant systems based on the methodology presented in the thesis. The experimental results and the contribution of the thesis are discussed in the conclusions.
Methodology of highly reliable systems design
Straka, Martin ; Kotásek, Zdeněk (advisor)
In the thesis, a methodology alternative to existing methods of digital systems design with increased dependability implemented into FPGA is presented, new features which can be used in the implementation and testing of these systems are demonstrated. The research is based on the use of FPGA partial dynamic reconfiguration for the design of fault tolerant systems. In these applications, the partial dynamic reconfiguration can be used as a mechanism to correct the fault and recover the system after the fault occurrence. First, the general principles of diagnostics, testing and digital systems dependability are presented including a brief description of FPGA components and their architectures. Next, a survey of currently used methods and techniques used for the design and implementation of fault tolerant systems into FPGA is described, especially the methods used for fault detection and localization, their correction, together with the principles of evaluating fault tolerant systems design quality.  The most important part of the thesis is seen in the description of the design methodology, implementation and testing of fault tolerant systems implemented into FPGAs which uses SRAMs as the configuration memory. First, the methodology of developing and automated checker components design for digital systems and communication protocols is presented. Then, a reference architecture of a dependable system implemented into FPGA is demonstrated including several fault tolerant architectures based on the use of partial dynamic reconfiguration as the mechanism of fault correction and the recovery from it. The principles of controlling the reconfiguration process are described together with the description of the test platform which allows to test and verify the design of fault tolerant systems based on the methodology presented in the thesis. The experimental results and the contribution of the thesis are discussed in the conclusions.
Reliability of Technical Systems
Jirgl, Miroslav ; Šedivá, Soňa (referee) ; Havlíková, Marie (advisor)
This thesis deals with a reliability of technical systems. It is divided into four main parts. The first part deals with the mathematical description of reliability. Probability and statistics are used for this description. This part includes the definition and properties of random events, the description of discrete and continuous random variable and its distribution. The second part contains the definition and expression of reliability, types of faults in the digital circuits and the reliability of electronic components. This part introduces into problems of reliability. The third part includes making the reliability diagrams and reliability analysis. Each method is briefly described here. Further advantages and disadvantages of using each method are given here. The two most widely used reliability analysis - Failure Mode and Effect Analysis - FMEA (resp. FMECA) and Fault Tree Analysis – FTA are described in a greater detail. The last part focuses on an example of calculation of reliability. An analyzed object is Universal Charger NiMH and NiCd batteries. Reliability is analysed by block diagram, FTA and FMEA.
Modelling and prediction of reliability
Jirgl, Miroslav ; Jalovecký,, Rudolf (referee) ; Havlíková, Marie (advisor)
This thesis presents a reliability analysis of a technical system. It is divided into three main sections. The first section introduces some of the most significant problems of reliability. It deals with a definition and an expresion of reliability, a reliability diagram selection and a detailed description of the reliability analysis. This part also includes an overview of reliability analysis types. Some of the most widely used reliability analyses are briefly described; further advantages and disadvantages of using each method are listed. Failure Modes and Effects Analysis - FMEA is then described in a greater detail. The second section contains an analysis of aviation conditions as well as a design of a reliability analysis that concerns a selected digital system; the system under analysis is a pitch trim indicator. The main design issue lies in a choice of a most suitable method. This choice stems from the overview of reliability analyses presented in the first section of the thesis. In the last section, a FMEA reliability analysis of the pitch trim indicator is conducted. This part includes a discussion of the results as well as a design action that is to lead to an increase in reliability of the analyzed system.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.